Buscador
Diplomatura en Ciencias Sociales Computacionales (IN37768/22)-Fecha de Realización
Fecha de Realización:

Del 25/07/2022 al 21/12/2022

Diplomatura en Ciencias Sociales Computacionales (IN37768/22)-Cierre de Inscripción
Cierre de Inscripción:

17/07/2022

Diplomatura en Ciencias Sociales Computacionales (IN37768/22)-Tipo de Carrera
Tipo de Carrera:

Diplomatura

Descripción

Charla informativa: por plataforma meet el martes  5/7 a las 18 hs

Enlace: https://meet.google.com/xcy-eqej-fhg

La diplomatura se divide en dos segmentos: módulos generales y módulos de técnicas. 

Con los módulos generales se busca generar bases sólidas computacionales - aprendizaje de lenguajes de programación, paradigmas de programación, bases de datos y modelado - y un conocimiento práctico de las principales técnicas del mundo de la ciencia de datos - aprendizaje supervisado y no supervisado -. 

Con los módulos de técnicas se busca el conocimiento y aplicación técnica de herramientas propias del ámbito computacional y con un fuerte beneficio en su aplicación en las Ciencias Sociales. En este sentido, se elaboraron tres módulos de técnicas: Sistemas de Información Geoespacial para el Análisis social, Procesamiento de Lenguaje Natural y Teoría de Grafos para el Análisis social. 

El módulo de técnicas busca formar en tres ámbitos claves para el estudiante proveniente de las ciencias sociales y humanidades: aprender a trabajar con información espacial y territorial, aprender a trabajar con información textual y el lenguaje y por último el aprendizaje de herramientas de la teoría de grafos proveniente de las ciencias matemáticas para el modelado de datos sociales.

Las disciplinas mencionadas buscan brindarle al estudiante un sólido conjunto de herramientas para trabajar con problemáticas y dimensiones propias de la sociedad y el individuo tales como el lenguaje y el territorio como así también la consideración de conocimientos nativos de la computación y la ciencia de datos. 

CONTENIDOS DE LOS CURSOS:

Fundamentos de las Ciencias Sociales Computacionales.

Introducción al pensamiento computacional aplicado a las ciencias sociales. Introducción a lenguajes de programación. Lógica, algoritmos y secuencialidad. Sintaxis de un programa.
Introducción a Python. Variables. Tipos y colecciones de datos.  Estructuración de código. Funciones nativas y propias. Estructuras de control condicional, iterativa y manejo de errores. Librerías y paquetes. Tipos de archivos.
Introducción a las bases de datos. Estructura de datos. Manejador de base de datos. Datos estructurados y no estructurados. Modelo de Bases de Datos Relacionales y No Relacionales. Modelo ACID.

Introducción al Aprendizaje Estadístico.

Introducción al análisis estadístico. Nociones de estadística descriptiva aplicada a ciencias sociales. Medidas de tendencia central y de dispersión. Estimación y estimadores. Probabilidad y distribuciones. Nociones de estadística inferencial.
Modelos estadísticos paramétricos y no paramétricos. Estimación no paramétrica de la densidad. Modelos lineales y de clasificación. Modelos de aprendizaje supervisado y no supervisado. Modelo de árboles de decisiones y clusterización.
Casos de aplicación para el análisis de datos. Preprocesamiento, modelización y visualización. Manejo de estructuras de datos y aplicación de técnicas y algoritmos adecuados.

Módulo de técnicas I: Sistemas de Información Geoespacial para el análisis social.
Introducción al tratamiento de información geográfica. Nociones básicas de data georreferenciada: sistemas cartesianos, sistemas proyectivos, Gauss Kruger, Utm. Cartografía digital. 

Datos geográficos. Definición y características. Componente espacial y temático. Capas. Modelo raster y vectorial. Tipos de datos geográficos utilizados en el análisis de datos: líneas, puntos y polígonos.

Módulo de técnicas II: Procesamiento de Lenguaje Natural (NLP).

Introducción al procesamiento de lenguaje natural. Principales aplicaciones en ciencias sociales. Trabajo con formatos textuales. Principales librerías de NLP. Tokenización de palabras. Stemming. Lematización. Stop Words. Part of Speech (PoS) y Named Entity Recognition.
Clasificación de textos y palabras. Métricas de clasificación y matriz de confusión. Técnicas de Aprendizaje Supervisado y no supervisado aplicado a NLP. Análisis de Sentimiento y Semántico. 

Algoritmos de NLP. Topic Modeling: Latent Dirichlet Allocation (LDA) y Structural Topic Modeling (STM). Técnicas de visualización para análisis de NLP.

Módulo de técnicas III: Teoría de grafos para el análisis social.

Introducción a la Teoría de grafos. Concepto de grafo. Relaciones, nodos y aristas del grafo. Propiedades de los grafos y direccionalidad. Tipos de grafos. Representación visual de grafos. Estructuras de lista y matriciales. 

Conceptos de sociometría y sociograma. Aplicaciones de teoría de grafos para representación del campo social. Utilización para el modelado de comportamiento humano. Casos de aplicación de grados para el modelado de relaciones humanas en redes sociales (Social Graph - Facebook).

Modalidad: SINCRONICA

Días y horario de cursada sincrónica: lunes y miércoles de 19hs a 22hs

Más información:
Correo electrónico: diplomaturas.sac@unab.edu.ar
WEB: https://www.unab.edu.ar/

 

Perfil de destinatarios INAP/FoPeCap:
Este programa tiene como destinatarios a agentes   que se desempeñen en agencias de la administración pública nacional (aportantes al FoPeCap) comprendidos en el Convenio Colectivo de Trabajo 214/2006,  y que cumplimenten en paralelo los requisitos solicitados por la UNaB

 

Postulación en el INAP:
Deberá realizarse mediante el Formulario de Postulación Formación 2022 on line; dado que posee valor de Declaración jurada, tenga presente que deberá enviar por correo electrónico a: formar2020@jefatura.gob.ar, la siguiente documentación (en archivo de imagen o PDF):

  • Nota dirigida al Sr. DIRECTOR INSTITUCIONAL del INAP, Lic. Mauro E. SOLANO, firmada por el postulante y la autoridad inmediata superior con rango no inferior a Director/a Nacional o equivalente. La misma deberá describir el resultado que se espera del cursante en términos de competencias para mejorar el desempeño de su organismo y aprobación de los permisos necesarios -dentro del horario laboral- para que el postulante pueda cursar el programa sin inconveniente.
  • Acta Compromiso firmada por el postulante y por la autoridad inmediata superior con rango no inferior a Director/a Nacional o equivalente